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The quenched averaged percolation problem of a lattice with a given structure 
is analyzed. The structure is described by the static structure factor S(q)~ q-a 
in the region q ~ 0. As a result of the renormalization group, it follows that the 
critical behavior for a < 2 is the same as in the random percolation. In the case 
of a = 2  second universality class with r /=0  and v = l / 2 + e / 8 + e 2 / 3 2  is 
predicted. 
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1. I N T R O D U C T I O N  

The formation of molecular networks (for instance, the formation of a gel 
starting from monomers) can be described in an obvious way by using the 
percolation concept. The classical percolation model is based on a lattice 
with translation symmetry, in which each lattice point is a monomer and 
each lattice site is a latent bond. In the network formation process this 
latent bond will be transformed into real bonds. Then, the occupation 
probability p is the measure of the formed bonds. Analytical (3'4) and 
numerical (8) investigations show the well-known critical behavior near the 
sol-gel transition. Many network formation processes realize structures 
where not all lattice points are occupied by a monomer. The simplest case 
is the random bond percolation on a dilute lattice. (~'9-1~) Here, we have a 
random distribution of vacancies of the lattice, e.g., as a result of this dilu- 
tion not all lattice sites are latent bonds (such a bond must be neighbor to 
two monomers). Now, the formation process is a percolation of a lattice 
with a quenched disorder. Against this percolation of a randomly diluted 
lattice, a more realistic situation is given by a spatial distribution of the 
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monomers with a nonconstant probability function P, from which follows 
the well-defined static structure factor S(q) as a characteristic structure 
value. The determination of the critical behavior near the percolation 
threshold of such a system is the central aim of this paper. 

2. M O D E L  A N D  RESULTS 

We start our consideration from a quenched site dilute lattice, where 
the lattice sites are randomly occupied by Potts spins. The distribution of 
occupied sites is homogeneous and isotropic and may be characterized by 
a static structure factor S(Ik[). The Potts Hamiltonian for this quenched 
site-diluted model reads (1'2) 

H= -K  ~ c,cj[6~,~-l]+c.o~ [-(~o_i,1-- 1 ]  (1) 
<U> i 

(U= 1 ..... s represents the Potts spin at the lattice point i; c i=0,  1 is the 
character of this lattice point (ci=0:  vacancy). In percolation theory the 
constant K determines the bond probability p = 1 - e-K and o; represents 
an external field. The summation in the first part of Eq. (1) contains all 
pairs of neighboring lattice sites. From this Hamiltonian there follow in a 
well-known way (1) the characteristic values of the percolation theory, 
which in the case of a dilute lattice are a functional of the lattice structure. 
After averaging over the actual structure e we get for the average number 
of clusters Ncl, the average cluster m a s s  P g e l ,  and the weight-average 
molecular weight M (2) (all values per unit volume) 

NCl = (F(e, co ) )c Io ,=o+( -  1 (2) 

o9=0 
Pgel - 63o; ( F ( e ,  ( :o))e  + C - - 1  (3)  

02 co= M(2)= (F(e, co)) c + g -  1 (4) 
0o;2 o 

with the actual, structure-dependent free energy 

F(c, ~o)= lim ~sln ~ e -H (5) 

and the concentration g+ of occupied lattice sites. 
Analogously, the quenched averaged pair connected Po can be 

obtained by introducing an inhomogeneous field o;~ at each site i, 

02 ) c  co = Pu - c~o;, cO~y (F(c, o;) o (6) 
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Writing the Potts spins states in (1) as a set of s vectors e] in ( s - 1 ) -  
dimensional space (3'4~ (e = 1,..., s and a = 1,..., s -  1) 

e;e~ = s6 ~ -  1 

which reflects the full symmetry of the model, we find that the partition 
function Z becomes a functional integral by a typical transformation (5) in 
a continuous spin representation with the new field variables 05~ 
(a = 1 ..... s - 1, i = 1,..., N, lattice site, co = 0) 

ZCc]=fD exp[-1  ,TMij 2+yr(c, ,7) (7) 
20a i a 

with the structure-dependent potential 

V(ciq~) = l n  ~ exp(ciqS'/e;) 

I 2 1 a b c 1 a b c d =ci~--c~Q~b~.qb~qS~qS~--c~T~b~dq~q~qS~cbi (8) 

Note that in this representation the identity c~=c~ was used. Using 
c~ = ~ + ~ with ~ = l - ?, - ~ and writing the tensor q~Mq~ in terms of local 
values (q~2, (Vq~)2), a simple diagram theory follows. From example, the 
two-point Green function G(q, ~) becomes a diagram series, which is 
shown in Fig. 1. Each wavy line characterizes in this representation an 
external field ~. The quenched average over this external field with the 
given probabili ty P(e, t) generates Fourier-transformed correlation func- 
tions (~q ~q .... ~qn) of the lattice structure. A simple algebraic investigation 
shows c6) that a separation of this function is possible with 

(~ql~q2"''~q n)~-C 2 ~I [ S ( q , ) 6 ( q ~ - q , ) ] + ~  (9) 
c o m b i n a t i o n s  p a i r s  

+ l l  + 

§ 

+ _ _ +  

4- - 

Fig. 1. Quenched average of the propagator G. 
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where S(q) is the static structure factor. Therefore, the quenched average 
over the diagrams produces the sum over all combinations of different pair 
connections between the ~ lines. The weight of such a structure line is S(q). 
Generally, the behavior of Go(q) and S(q) in the region q--* 0 determines 
the scaling law near the percolation threshold. In principle, the free 
propagator behaves in the case of a massless theory as q 2; the structure 
factor may be a general power function S ( q ) ~  q a. Under this considera- 
tion there follows for the degree divergence of a vertex function F (E) with 
E external legs 

/~  K2n4+(2 a ) l a + ( L  1)(d-- 6) - -2E 

where ~c is a given impulse scale, n 4 the number of vertices with four legs, 
I a the number of structure lines, and L the number of loops. For  fixed L 
the degree of divergence has the maximal value in the following cases: 

(a) 2 > a :  n4=O , /~=0. 

(b) 2 --= a :  rt 4 -= O, l a = arbitrary. 

(c) 2 < a: r/4 = 0, l a = l max. 

This means that if a < 2, the structure of the c distribution is irrele- 
vant, the the scaling law of the random percolation theory is always valid 
for the region a < 2 and therefore all critical exponents have the same 
values as in the random percolation theory, only the nonuniversal critical 
point Pc will be changed. Another situation is given with a = 2. Now, a set 
of new relevant diagrams follows, connected by internal structure lines, 
which changes the typical behavior near the sol-gel transition. In this case 
the problem contains relevant interaction constants (go, ho), which 
describe the q~3 interaction and the ~ 2  interaction. Figure 2 shows the first 
elements of the diagram series for these two vertices and for F2(k). 

+ + + 

Fig. 2. P e r t u r b a t i o n  expans ion  for the 3 re levant  vertex elements.  
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Using the renormalization group theory, we get the typical equation 

+~o~-~7o+~2~ rE=o (lo) 

where 

g = Ke/2U 

h = tce/2v 

#=rP-P~I  

e = 6 - d  

The functions ft,, fl~, ~ ,  and 7r are determined by the perturbation series 
which are shown in Fig. 2. Using the results of the Appendix, we get the 
following fixpoints for the interesting case of the percolation theory s ~ 1: 

(a) u * =  v * =  0. This is the unstable Gaussian fixpoint. 

(b) u * = 0  and v * r  Here (v*)2<0;  this fixpoint is complex and 
therefore an unsuitable point. 

(c) v * = 0  and (u*)2=(2/r)e+o(e2). This is the fixpoint of the 
random percolation with the critical exponents q = - ( 1 / 2 1 ) e -  
(206/9261)~2 and v - 1 = 2 - (5 /21)e -  (653/18522)e 2. This fixpoint 
is only stable if v = 0. 

(d) ( u * ) 2 = e +  (13/8)e 2 and (v*)2=�89 2 is the stable fixpoint for 
all v :/= 0. 

Hence, the last case determines the behavior near the percolation 
threshold for a lattice with a structure factor S(q)~ q-2. To second order, 
the exponents, which are calculated in a direct way, become 

= o ( d )  (11) 

1 

Using this equations, the other critical exponents follow by the well-known 
scaling relations (Table I). 

3. CONCLUSIONS 

As the main result of the last considerations it follows that the 
behavior near the percolation transition is relatively stable against a 
change of the static structure factor. In the case that the structure factor is 
a power law S(q)..~ q a with a < 2 for q + 0 (long-wave limit; small-angle 
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Table I. Critical Exponents 

d Classical  R a n d o m  percola t ion  Percola t ion with S ~ q -  2 

t7 0 - ~  + o(d) o(e 3) 
v 
3 1 1- -  + e + o ( e  2) 1 + o ( e  3) 

a - 1 - 1 + }e + o ( g  2) - 1 - �88 + o(e ~) 
~5 2 2 q -2g q -o (8  2) 2q- �88  2) 

1 ~ { + o(~ ~) ~ ~ + o(~ ~) 
-5 ~ - ~ + o(~ 2) ~ - ~ + o(~ ~) 1" 2 

region of X-ray scattering), one get the same unchanged critical exponents 
as in the case of the random percolation. Note that the scaling behavior at 
the percolation threshold is determined by the knowledge of S(q) for small 
q alone. Clearly, a change of the nonuniversal critical probability Pc will be 
expected. A change of the critical exponents follows for all structures with 
S(q)~q -2 for q ~ 0 .  This is an important result for the formation of 
networks. Many amorphous systems show in the small-angle scattering 
region (SAXS, SANS) a typical power-like law S(q)~ q-a, which reflects 
the site (monomer) distribution. Hence, if this behavior is also charac- 
teristic near the sol-gel transition (determined by the bond distribution), 
one can expect a change of the universal behavior if S(q) scales as q-2. On 
the other hand, if S(q)~ q-a,  a < 2, it follows the same universal class as 
in the random percolation theory. Because of the unknown convergence 
radius in the e-expansion, further numerical simulation is desirable. 

APPENDIX  

The determination of the functions ft,, fly, 7~, and ?~2 follows from the 
calculation of the divergence part of the perturbation series in the two-loop 
approximation. In this case it is straightforward to calculate the connec- 
tions g = g(go, ho, ~c) and h = h(go, ho, ~:) and also the field renormaliza- 
tion constants Z~=Z~(go, ho,~ ) and Z~2=Zc,2(go, ho, x). A simple 
algebraic transformation gives the dimensionless inverse relations Uo = 
Uo(U, v) and Vo = Vo(U, v) and also Z~ = Zc,(u, v) and Zo2 = Zc,2(u, v). From 
this point and with go = x~/2Uo and h 0 = x~/2Vo, it is simple to determine the 
functions 

~U 
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As a result we obtain 

~V 
fiv= ~ - ~K 

~? in Zo 

In Z~2 
7~2 = K OK 

gU 2 o f l .=-~-(!+alu2+a2v2+al,u4+a12uv'+a22v 4) 

_ e v  1 fl~= -~( + b l u 2 + b 2 v 2 + b l l u 4 + b 1 2 u 2 v 2 + b 2 2  v4) 

~4' = CI b/2 -~ C2V2 "~- Cll/A4 nu C121X2U2 -~ C22194 
7~2 = d l  u 2 + d2v 2 + dH u 4 + d12u2v ~ + d22 v4 

with the coefficients 

7 3~  
a~= -�89 +2z 2 ~ZI~-- 5~2~ 

a 2 = 5  - 6 1  

7 a . = z 3  ~ z ~ z 2 e - ~ 6 4 e z ~ - 2 7 - 2  ~1_ . _ 2  3 , 2  

a12 - -  ~ ! Z 1  --~ ~--Z 2 

485 8473 ^ 
a22 -= ~ - -  ,1-32 ,b 

5 61 
b I = 5zl  -- 5~Zl ~ 

bt 1 61 1037,72_ 8ziz2 73 2 = --  ~-~zxz2g --  -gTg-~l~ + + ggz  1 

b,2 = ~z~ - -  ~ _ Z  1 6 0 4 3  

b22 67 ~I4E 

c~ = ~z~ + ~ z , ~  

7 4 9  2 5Z1Z2 I1 _2 c n = ~z~z2~ + 2-3-~zi + -- 2i~zi 

~--- 679 _ 
C12 ~[ZI -.,]- 8--~Z1 

109 -.,L 
C22 ~ 1~8 - -  ~ 

(A1) 

822/67/5-6-18 
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and 

d 1 = - z  1 --~ 3Zl~  

d2 = - 1  + 43-e 

25 2 5 2 
d l l  9 z 1 z 2 , s ~ - ~ Z l ~ - - z i z 2 - - [ z  1 

d12 = - -  ~ z ]  + 12~2zl g 

d22 = 9 + 95 ~ a  

z l  = s 2 ( s - -  2) 

z 2  = s 3 ( s  - 3) 

Z 3 = $3(S 3 - -  6S 2 + 10S) 

where s is  the n u m b e r  of spin states ( s  = 1 for the percola t ion theory).  
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